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Abstract

English
As modern graphics hardware improves in the field of ray tracing acceleration, it becomes
increasingly apparent that it will be used more frequently in real-time applications. Path
tracing thus marks the current direction of research regarding modern real-time rendering.
Even with modern hardware it is still not feasible to trace more than one path per pixel.
This leads to a severe amount of variance which manifests itself as noise. One way to reduce
that noise is by filtering. Filtering spatial regions results in the technique called path space
filtering. Filtering over spatial regions results in a biased estimator. The image quality
is thus determined by a variance-bias trade-off. This thesis introduces two techniques to
control this variance-bias trade-off by using the spatial structure provided by path space
filtering to estimate the variance of a spatial region. Based on these variance estimations
this paper derives different ideas to both improve the image quality and also improve frame
times. The first technique introduces path survival and interpolation between path tracing
and path space filtering by analyzing the variance on the primary surface, hence the name
adaptive path space filtering for primary surfaces. It achieves to improve the frame times
of path space filtering beyond the frame times of path tracing while also generating better
image quality in some cases. The second technique analyzes the variance along paths
and terminates into a spatial cell once the variance exceeds a given threshold. It is thus
called adaptive path graphs. While being computationally heavy, it generates interesting
results regarding the variance-bias trade-off and can handle difficult situations, especially
if combined with the first technique.
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2 Contents

Deutsch
Heutige Grafikkarten, welche über Hardwarebeschleunigungen für Ray Tracing verfügen,
sorgen dafür, dass Ray Tracing immer beliebter wird. Es ist demnach offensichtlich,
dass es immer öfter für Echtzeitapplikationen Verwendung findet. Path Tracing gibt dem
entsprechend, was Ray Tracing angeht, die Richtung momentaner Forschungen im The-
mengebiet Echtzeit-Rendering an. Jedoch ist es momentan nicht für Echtzeitprogramme
umsetzbar mehr als einen Pfad pro Pixel zu verfolgen. Dies führt zu einer hohen Varianz,
welche sich als Rauschen im Bild manifestiert. Eine Möglichkeit, um dieses Rauschen
zu verringern, ist es einen Filter anzuwenden. Filtert man über räumliche Regionen, so
resultiert das in einer Technik namens Path Space Filtering. Das Problem hierbei ist
jedoch, dass das räumliche Filtern zwar Varianz verringert, jedoch zu einem Bias führt.
Die Bildqualität ist demnach durch einen Ausgleich zwischen Varianz und Bias definiert.
Diese Arbeit führt zwei Techniken ein, um diesen Ausgleich zwischen Varianz und Bias
zu steuern. Dabei wird die räumliche Datenstruktur, welche durch Path Space Filtering
eingeführt wird, verwendet, um die Varianz in der räumlichen Region zu schätzen. Anhand
dieser Schätzung werden in dieser Arbeit dann verschiedene Ideen besprochen, um sowohl
die Qualität des Bildes als auch die Laufzeit des Programmes zu verbessern. Die erste
dieser Techniken führt Methoden für das Pfadüberleben und der Interpolation zwischen
Path Tracing und Path Space Filtering anhand des geschätzten Varianzwertes an primären
Oberflächen ein. Daraus folgt dann der Name Adaptives Path Space Filtering für Primäre
Oberflächen. Diese Technik erzielt eine Verbesserung der Laufzeit von Path Space Fil-
tering, welche sogar die Laufzeit von Path Tracing überbietet. Des Weiteren erzeugt die
Technik dabei noch eine bessere Bildqualität für manche Situationen. Die zweite Tech-
nik analysiert die Varianz entlang der Pfade und terminiert diese, sobald diese geschätzte
Varianz einen gewissen Schwellwert übersteigt. Sobald die Varianz überschritten wird,
verwendet die Technik den Beitrag der räumlichen Zelle für das Endergebnis. Diese Tech-
nik wird dem entsprechend Adaptive Path Graphs genannt. Obwohl sie auf der einen Seite
rechenaufwändiger ist, erzeugt sie dennoch interessante Ergebnisse im Zusammenhang mit
dem Varianz-Bias-Ausgleich und kann vor allem in Kombination mit der ersten Technik
mit schwierigen Situationen zurecht kommen.
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1. Introduction

Realistic light transport is a keystone to rendering realistic scenes. Path tracing is therefore
the go-to method in modern day cinema and similar offline media. In order to implement
this method, it is mandatory to have an efficient implementation of ray tracing. That is
why modern graphics cards all come with hardware accelerated ray tracing cores. This
enables path tracing for interactive applications.

Path tracing generates remarkable results if enough samples can be generated. As inter-
active applications have a low budget of frame time, it is not feasible to render more than
one sample per pixel. The resulting image is therefore noisy by nature.

In order to suppress this noise, there are many techniques for denoising an image. Yet, the
problem persists, as they introduce computational overhead and cannot remove the noise
entirely. One example would be screen-space denoisers like OptiX. These denoisers work
well for less noisy images, but the noisier it gets, the blurrier the denoised image gets.
Therefore, it is important to reduce the induced noise in the first place, by using different
sampling techniques in order to improve sample quality, or by increasing the number of
samples.

One of these techniques is called path space filtering [KDB16]. The main idea is to
accumulate the outgoing radiance of spatial regions inside a spatial structure. The result
is thereby filtered by taking the average over the accumulated values for a given region.

Unfortunately this comes at the price of an induced bias. This bias manifests itself on
many occasions, as high frequency details get filtered away.

This thesis introduces new adaptive techniques in order to improve upon path space fil-
tering. The goal is to reduce the bias introduced by path space filtering by also carrying
the variance inside the spatial structure. By using this variance estimate for a given spa-
tial region, it is possible to improve frame times, while also introducing control over the
variance-bias trade-off.

The introduced techniques are separated into two techniques for primary surfaces and one
so called adaptive path graphs approach which binds the overall variance of a path below
a given threshold.

Chapter 2 explains the basis of this thesis starting with the the rendering equation 2.1,
followed by Monte Carlo integration 2.2 and path tracing 2.3 and ends with the introduc-
tion of path space filtering 2.4. The next chapter 3 introduces related work and provides
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4 1. Introduction

short insights for these techniques and concepts. That is followed by the main chapter 4,
which introduces the techniques of adaptive path space filtering for primary surfaces 4.1
and adaptive path graphs 4.2. Chapter 5 discusses implementation detail and chapter 6
discusses results regarding image quality and frame time analysis. At last, the conclusion
is given in chapter 7.
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2. Background

First of all, it is important to understand the underlying techniques used to implement
path space filtering. This background section deduces path tracing by first introducing
the rendering equation. After explaining what a Monte Carlo integral is, it is easy to see
how path tracing solves the rendering equation as a Monte Carlo integral. Finally, this
chapter introduces the technique in which this thesis is based on: path space filtering.

2.1 Rendering Equation
In order to analyze the problem mathematically, it is necessary to have a mathematical
expression for correct light transport. This expression is called the rendering equation and
was first introduced by Kajiya [Kaj86]. It describes how the reflected radiance of a given
surface point, as seen in figure 2.1, is calculated:

L(x, ωo) = Le(x, ωo) +
∫

Ω
f(ωi, x, ωo)Li(x, ωi)| cos θi|dωi (2.1)

where ωo is the reflected direction, Le(x, ωo) is the emitted light in direction ωo, Ω is the
hemisphere along the normal of the surface, f(ωi, x, ωo) is the bidirectional reflectance
distribution function (short BRDF) and Li(x, ωi) is the incoming radiance from direction
ωi. The term | cos θi| weakens the contribution of incoming radiance with respect to the
solid angle θi. It can also be written as | cos θi| = |ωi ·Nx|.
This equation is hard to solve as it contains itself recursively inside an integral.
A common way to rewrite this integral is to write it in path space. The following equations
are taken from the lecture slides of Dr. Johannes Schudeiske [Sch22].

Ip =
∫

P
hp(X) · f(X)dX (2.2)

where X = (x1, x2, ..., xk) ∈ P refers to a path with vertices x1, x2, ..., xk, hp(X) is a
function that selects paths per pixel and f(X) is the measurement contribution function
in product area measure dX = ∏

i dxi. hp(X) is the reconstruction filter.
The measurement contribution function can then be written as:

f(X) = LeG(xk−1, xk)
(

k−1∏
i=2

fr(xi−1, xi, xi+1)G(xi−1, xi)
)
W (2.3)
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6 2. Background

with the geometry term G and the camera responsivity function W .

𝑁𝑥

𝑥

𝜃𝑖

𝜔𝑜 𝜔𝑖
Ω

𝑑𝜔𝑖

Figure 2.1: Depiction of variables used in the rendering equation 2.1.

2.2 Monte Carlo Integration

Solving the rendering equation requires solving an integral. This equation does not have
a closed form solution, hence the need for an integration method.

Monte Carlo integration can solve this problem. Let S be the integration domain, in order
to evaluate a Monte Carlo integral given f : S → R, x ∼ p, a random variable x with
probability density p(x) and x1, . . . , xN ∈ S random samples for:

µf ≡ E[f(x)] =
∫

S
f(x)p(x)dx ≈ 1

N

N∑
i=1

f(xi) ≡ µf (2.4)

So in order to approximate an integral I of a function f , it is possible to write:

I =
∫

S
f(x)dx ≈ 1

N

N∑
i=1

f(xi)
p(xi)

(2.5)

Calculating the standard error is nothing else but calculating the variance of the difference
between µf and µf :

V [µf − µf ] = V [µf ]− V [µf ]
= V [µf ]

= V

[
1
N

N∑
i=1

f(xi)
]

= 1
N2

N∑
i=1

V [f(xi)]

= 1
N2N · V [f ] = V [f ]

N

(2.6)
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2.3. Path Tracing 7

As the variance is nothing but the squared standard error, we get a standard error of

σ√
N

(2.7)

for Monte Carlo integration, where σ is the standard error of the function f . This error
manifests itself as noise. It can be reduced by either increasing the number of samples or
improving the variance of the function. The latter can be achieved by proper sampling
strategies.

The main benefit of Monte Carlo integration compared to other integration methods, such
as Quadrature, is that the variance of the approximated integral is independent of the
dimension of the integral. It therefore performs better for high dimensional integrals.

2.3 Path Tracing
The rendering equation is a high dimensional integral. Path tracing approximates the
rendering equation with Monte Carlo integration.

In order to perform Path Tracing, the camera shoots a ray into the scene. Upon hitting a
surface, a random direction is chosen in the hemisphere of said surface point and a new ray
is shot from there. This is done until either a light source or the environment map is hit.
For reasons of performance, the maximum path length is kept at a predefined constant
value. This can be seen in figure 2.2. There are also other possibilities to terminate paths,
for instance Russian Roulette.

Another optimization is to shoot a second ray at every intersection for primary illumination
at that spot. If the scene consists of many light sources, shooting one ray per intersection
per light source becomes expensive quickly. Therefore it is better to choose one light
source at random and only trace a ray towards that light source. This is called next-event
estimation. This yields a trade-off between induced variance from the stochastic process
of choosing a light source and the performance benefit of tracing less rays.

A resulting image can be seen in figure 2.3. The same image but with the average over
1000 samples per pixel can be seen in figure 2.4.

In order to reduce the variance, it is better to use importance sampling techniques. Rather
than choosing a direction from a uniform distribution at any intersection, one should choose
a distribution that resembles the local BRDF interaction. This makes sense as the BRDF
interaction is a factor inside the integral of equation 2.1. Sampling proportionally to this
factor is thus called BRDF sampling. It ensures that highly reflective surfaces will get
more samples towards the reflected direction and will therefore lead to a better result at
said surfaces.

7



8 2. Background
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Figure 2.2: Two dimensional illustration of path tracing.

Figure 2.3: Example of an image generated by path tracing.

8



2.4. Path Space Filtering 9

Figure 2.4: Accumulated path traced image after 1000 frames of accumulation.

2.4 Path Space Filtering

As interactive applications do not have a big frame time budget, it is not practicable to
use more than one sample per pixel per frame. Using such a low number of samples per
pixel, introduces a lot of noise to the image. This can be improved by accumulating spatial
regions.

If spatially adjacent surfaces are considered to produce similar results, it is possible to
work with regional averages. This certainly does introduce bias, as there could be small
highlights for example that get averaged away, but the image will be less noisy.

This is the fundamental idea behind a method first introduced by Keller et al. [KDB16]
named path space filtering.

2.4.1 Mathematical Origin

Binder et al. [BFK19] provide a mathematical demonstration for their technique derived
from the rendering equation 2.1.

First the rendering equation is split into emitted and reflected radiance.

L(x, ωo) = Le(x, ωo) +
∫

Ω
f(ωi, x, ωo)Li(x, ωi)| cos θi|dωi

L(x, ωo) = Le(x, ωo) + Lr(x, ωo)
(2.8)

Binder et al. [BFK19] rewrite the reflected radiance as follows

Lr(x, ωo) =
∫

∂V
V (x, y)f(ωi, x, ωo)Li(x, ωi) cos θx

cos θy

|x− y|2
dy (2.9)

9



10 2. Background

This changes the integration domain from solid angle to surface area measure. The scene
surfaces ∂V are now the integration domain for next-event estimation and subpath con-
nection. V (x, y) describes the visibility function between the two surface points x and y.
The last term of the equation is referred to as the geometric term.

Taking the average over local neighborhoods results in

Lr(x, ωo) = lim
r(x)→0

∫
∂V

∫
Ωy

χB(‖x− y‖, r(x))
πr(x)2 ·

· f(ωi, y, ωo)Li(y, ωi) cos θydωidy
(2.10)

where r(x) is the radius of the sphere and

χB(d, r) :=
{

1 d2 < r2

0 otherwise
(2.11)

the characteristic function of the sphere. Dividing by the area of the intersection circle
between the surface and the sphere yields a density estimation also referred to as photon
mapping.

A similar equation can be formulated for path space filtering. The big difference is that a
local average is calculated and normalized by the integral of all weights in the neighbor-
hood. This results in

Lr(x, ωo) = lim
r(x)→0

∫
Ω

∫
∂V χB(‖x− x′‖, r(x))w(x, x′)Li(x′, ωi)f(ωi, x, ωo) cos θx′dx′∫

∂V χB(‖x− x′‖, r(x))w(x, x′)dx′ dωi

(2.12)

the finalized equation for path space filtering formulated by Binder et al. [BFK19]. It is
immanent that this technique produces bias for r(x) > 0.

For a voxel-based implementation, it is necessary to define the characteristic function of a
voxel, given by

χV (k, k′) :=
{

1 bs(k)kc = bs(k′)k′c ∧ s(k) = s(k′)
0 otherwise

(2.13)

for a resolution selection function s(k) with key k. Using voxels in equation 2.12 yields
the following equation

Lr(x, ωo) ≈
∫

Ω

∫
∂V χV (k, k′)Li(x′, ωi)f(ωi, x, ωo) cos θx′dx′∫

∂V χV (k, k′)dx′ dωi (2.14)

Assuming f(ωi, x, ωo) can be written as fr(ωo, x) ·fi(x, ωi) and fi(x, ωi) ≈ const inside the
voxel, it is possible to rearrange equation 2.14 as follows

Lr(x, ωo) ≈ fr(ωo, x)
∫

Ω

∫
∂V χV (k, k′)Li(x′, ωi)f(x′, ωi) cos θx′dx′∫

∂V χV (k, k′)dx′ dωi (2.15)

It is therefore possible to apply the albedo outside the voxel accumulation. This is very
important for high frequency textures, as they would otherwise lose a lot of detail.

10



2.4. Path Space Filtering 11

2.4.2 Implementation

The method has been optimized by Binder et al. [BFK18, BFK19]. Path space filtering
consists of two passes. Firstly, the path tracer that generates samples and accumulates
them in a hash map, and secondly, a pass-through shader that reads from said hash map
and outputs the final image.

The hash map uses the position as hash input for the key. A second hash function,
additionally taking the surface normal and incident direction into account, is used for
linear probing of the hash map in order to generate spatial coherence in the data structure.
The insertion is managed by atomic floating-point addition.

In order to carry values from earlier frames, a compute shader executes an eviction strategy.
It erases a cell if the time stamp is too old and applies an exponential moving average for
cells that keep getting filled.

As this approach induces discretization artifacts, Binder et al. [BFK18] provide a jitter
approach for reading from the hash map. This approach induces noise again but this time
the noise has a smaller variance, because the neighboring cells are rather similar to each
other. It is therefore easier to denoise the noise induced by the jittering than the noise
generated by the path tracer.

2.4.3 Adaptive Resolution and Jittering

Binder et al. [BFK19] provide a very simple implementation of adaptive resolution by
setting a proper s(k) in equation 2.13. s(k) is given by a level of detail function taking
the distance between a point and the camera. Taking the second order logarithm of that
distance yields the level of detail. The key generation and jittering is then described by
algorithm 1. The spatial structure and the provided jittering approach are visualized in
figure 2.5. Figure 2.6 and figure 2.7 depict the difference between an image with and
without jittering.

Algorithm 1: Computation of the two hashes used for lookup. Note that the argu-
ments of a hash function, which form the key, may be extended to refine clustering.
This algorithm is provided by Binder et al. [BFK19]
Input: Location x of the vertex, the normal n, the position of the camera pcam,

and the scale s.
Output: Hash i to determine the position in the hash table and hash f for

fingerprinting.
l← level_of_detail(‖pcam − x‖)
x′ ← x+ jitter(n) · s · 2l

l′ ← level_of_detail(‖pcam − x′‖)
x̃← b x′

s·2l′ c
i← hash(x̃, . . . )
f ← hash2(x̃, n, . . . )

11



12 2. Background

Figure 2.5: Spatial depiction of the hash map structure provided by Binder et al. [BFK19],
including jittering.

Figure 2.6: Example image of path space filtering.

12



2.4. Path Space Filtering 13

Figure 2.7: Example image of path space filtering with jittering.
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3. Related Work

This chapter introduces a few methods that are related to this thesis. These methods are
briefly explained and discussed here.

3.1 An Error Metric for Monte Carlo Ray Tracing
Path tracing is not a new technique. There are many papers that analyze path tracing in
a mathematical manner. One of these papers published in 1997 has been written by Bolin
and Meyer [BM97].
An error metric regarding path tracing is introduced in this paper in order to improve the
decision boundaries for Russian Roulette and splitting.
This error metric is deduced by evaluating the Monte Carlo integral of a given path tracer:

E[f ] ≈ f = 1
N

N∑
i=1

f(x(i)
0 , x

(i)
1 , x

(i)
2 , ...) (3.1)

where f(x(i)
0 , x

(i)
1 , x

(i)
2 , ...) is a function calculating the radiance of a given path with path

vertices (x(i)
0 , x

(i)
1 , x

(i)
2 , ...). The variance can be written as:

V [f ] = E[(f − E[f ])2]
= E[f2 − 2fE[f ] + E[f ]2]
= E[f2]− 2E[f ]E[f ] + E[f ]2

= E[f2]− E[f ]2

(3.2)

Calculating the variance of the path tracer thus results in:

V
[
f
]

= V [f ]
N

(3.3)

as calculated before in equation 2.6. The next step is to express the overall variance of the
path tracer with respect to each level of the path tree. This leads to the following formula:

V [f ] = V [E [f |x0]] + E [V [f |x0]] (3.4)

14



3.2. Variance Aware Path Guiding 15

applying this formula recursively yields:

V [f ] = V E [f |x0] + EV [E [f |x0x1] |x0] + EV [E [f |x0x1x2] |x0x1] + . . . (3.5)

or rather

V [f ] = V E [f |x0] +
∑

j

EV [E [f |x0...xj ] |x0...xj−1] (3.6)

This equation states how the variance, generated by the j-th layer in the path tree, affects
the overall variance of the path tracer. It implies that the variance of the path tracer is
nothing but the sum over the variance generated by each level in the path tree. The first
term V E [f |x0] describes the aliasing of a pixel. Bolin and Meyer [BM97] use this equation
in order to calculate an optimal splitting and Russian Roulette scheme.

3.2 Variance Aware Path Guiding
Variance aware path guiding is a technique developed by Rath et al. [RGH+20] in order to
estimate the target densities of guiding methods in order to achieve optimal performance.
Rath et al. [RGH+20] describe a generic procedure to calculate these optimal target
densities for local path guiding and apply it in two applications: unidirectional path
tracing and light source selection for many lights.

The first step of deducing this target density estimation is based on the assumption that
only a single decision along the path can be guided. The chosen quantity is the irradiance
E(x) of the surface point x. The typical estimator for E(x) can be written as:

〈E(x)〉 = 〈Li(ωi, x)〉| cos θi|
p(ωi|x) (3.7)

the target function p(ωi|x) is usually set to:

p(ωi|x) ∝ Li(ωi, x)| cos θi| = E[〈Li(ωi, x)〉]| cos θi| (3.8)

the problem with this target function is that it neglects the variance generated by 〈Li〉. A
better target density can be found if the variance of the irradiance estimator is taken into
consideration. This can be done by using the second moment, which increases if either the
mean or the variance gets bigger. Rath et al. [RGH+20] thus deduce the target density
to be:

pE(ωi|x) ∝
√
E[〈Li(ωi, x)〉2]| cos θi| (3.9)

The same deduction can be used to generate a target density for marginalized product
sampling. The goal for this step is to guide an estimator for the reflected radiance:

〈Lo(x, ωo)〉 = f(ωi, x, ωo)〈Li(ωi, x)〉| cos θi|
p(ωi|x) (3.10)

by using the same steps as before Rath et al. [RGH+20] deduce the target density to be:

pLo(ωi|x) ∝
√
E[f(ωi, x, ωo)2〈Li(ωi, x)〉2]| cos θi| (3.11)

15



16 3. Related Work

In order to implement these guiding distributions, Rath et al. [RGH+20] propose a spatial
cache approach. These spatial cache cells are thus trained to represent the target density
of a region by averaging over all the points inside that region.

Rath et al. [RGH+20] also deduce a target density in order to minimize the image error.
This is done by minimizing the error of every pixel. In order to do so, it is necessary to
consider the contribution of a path to a pixel, which is the product of the sensor response
and the path to the pixel.

Minimizing the pixel error thus consists of including the path contribution of a pixel in the
estimator. As learning one density per pixel is unfeasible, Rath et al. [RGH+20] propose a
target density for minimizing the mean squared error instead. This is done by minimizing
the mean variance over all pixels of the image.

The problem of minimizing the mean squared error is that darker pixels are neglected in
favor of brighter pixels. This is also a problem of the adaptive techniques discussed later
in this paper.

In order to solve this, Rath et al. [RGH+20] minimize the relative mean squared error
instead by dividing the mean squared error by the squared ground truth value of the
pixel. This value becomes thus independent of the pixel luminance. The ground truth is
obviously unknown, but Rath et al. [RGH+20] approximate it by denoising or filtering
the previous frame.

3.3 Path Graphs: Iterative Path Space Filtering
Deng et al. [DHC+21] introduce a technique that improves path space filtering by con-
structing a graph. This technique is thus called path graphs. This graph operates in world
space and consists of light and surface points. These points serve as the vertices of the
graph. As for the edges, there are three distinct edges. There are neighbor edges, light
edges and continuation edges. An illustration of the graph can be seen in figure 3.1.

This graph is constructed during the path tracing phase of the pipeline. In order to
generate neighbor edges, the algorithm connects each shading point to approximately
K− 1 nearby shading points. In order to do that, the shading points are distributed upon
K clusters. Points inside a cluster are then interconnected with neighbor edges.

Hereafter, an aggregation and propagation scheme is performed on the graph. This scheme
refines the graph in an iterative manner. The aggregation operator improves the radiance
estimates of the vertices by combining them over the neighborhoods generated in the
graph. Direct and indirect light aggregation are handled separately. The propagation
operator updates incoming indirect radiance estimates by copying the outgoing radiance
from vertices connected via continuation edges. These two operators are combined in order
to refine the graph iteratively.

At last, the graph is gathered and the final image is generated. This last step is thus called
the final gather. This step is needed as this method generates strong correlations between
nearby points. In order to fix that, the cluster size K is set to 1 in order to compute the
final pixel values. Doing so gets rid of these correlations. Another benefit of this step is
that it can be used as input for a denoiser.
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Figure 3.1: Illustration of a path graph by Deng et al. [DHC+21]

3.4 Real-Time Neural Radiance Caching for Path Tracing
Müller et al. [MRNK21] present a radiance caching method for real-time applications using
a neural network. The neural network is not pretrained but rather adapts while rendering.
This leads to so called generalization via adaptation. It maps spatio-directional coordinates
to radiance values.

The algorithm provided by Müller et al. [MRNK21] works by rendering one short path per
pixel per frame. These paths are terminated once the radiance cache provides a sufficiently
accurate value. Next-event estimation is performed for each vertex of the path. The last
vertex contribution is calculated using the radiance approximation provided by the neural
radiance cache.

In order to train the cache, a fraction of these short paths are extended by a few vertices.
These vertices are the so called training suffix. Most of the time this suffix consists of only
one vertex. Müller et al. [MRNK21] use the radiance estimate collected by all the vertices
along these longer training paths as reference values. These reference values are thus used
to train the neural radiance cache.

Müller et al. [MRNK21] also provide an efficient implementation of the neural network on
the graphics card. The main idea behind that implementation can be seen in figure 3.2.

Figure 3.2: Structure of the neural radiance cache by Müller et al. [MRNK21]
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18 3. Related Work

3.5 Adjoint-Driven Russian Roulette and Splitting in Light
Transport Simulation

Russian Roulette and splitting are two techniques to improve the efficiency of a Monte
Carlo Renderer. While Russian Roulette improves the render time by terminating paths
that have small contributions, splitting improves the quality by dividing paths. Vorba
and Křivánek [VK16] aim to improve these techniques by terminating or splitting paths
depending on the expected image contribution.

The decision whether to Russian Roulette or split is handled by a single real value q > 0.
If q < 1 the path will be terminated with a probability of 1 − q. If q > 1 the path is
split into q new paths. The weight νi of a particle thus needs to be rewritten in order to
compensate for the decision:

ν̂(y, ωi) = νi(y, ωi)
q(y, ωi)

(3.12)

A depiction of this concept can be seen in figure 3.3. Vorba and Křivánek [VK16] state
that the factor q should be chosen to be proportional to the total expected contribution
E[c(y, ωi)] divided by the computed measurement I. I could be for instance a pixel value.
This leads to the main equation of the paper:

q(y, ωi) = E[c(y, ωi)]
I

= νi(y, ωi)Ψr
o(y, ωi)

I
(3.13)

where the adjoint Ψ stands for the visual importance for a path traced from a light source.
Adjoint-driven Russian Roulette and splitting is designed such that the invariant:

ν̂(y, ωi) = I

Ψr
o(y, ωi)

(3.14)

is maintained. This is done by using weight windows such that the particle weight is
always in the weight window center. Vorba and Křivánek [VK16] state that these weights
thus oscillate around the ideal value I/Ψr

o(y, ωi).

Figure 3.3: Illustration of adjoint-driven RR and splitting by Vorba and Křivánek [VK16]
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4. Adaptive Path Space Filtering

The main problem of path space filtering is the visible induced bias. While jittering
removes some artifacts resulting from this bias, it cannot fix all of them. One example for
that would be high frequency detail on specular surfaces or high frequency shadows.

This chapter discusses techniques to control the variance-bias trade-off between path trac-
ing and path space filtering. The first technique does that by interpolating between the
path tracing result and the path space filtering result depending on the primary surface
4.1.2.

A technique for variance control along the path is also explained in this chapter. It is
called adaptive path graphs 4.2.

Another major concern is performance. As the values inside the spatial structure get
accumulated over time, it is not necessary to trace one sample per pixel anymore. If a
given first bounce has a properly converged cell inside the spatial structure, it is reasonable
to generate less samples for that region in order to improve the performance.

This chapter provides a technique for stochastic path survival depending on the primary
surface 4.1.1.

Implementing adaptive solutions for these problems consists of using some kind of per-
formance metric. A good idea would thus be to estimate the variance of a given spatial
cell. If the values accumulated inside the cell are roughly the same, the variance would
be small. Such cells would not need too many additional samples. In contrast to that a
cell with a high variance accumulates strongly deviating values. Such a cell would need a
higher number of samples in order to display a proper result.

4.1 Methods Regarding Primary Surfaces
The first methods consist of looking at the primary surfaces only. As path space filtering
relies on looking up the spatial structure for the first surface only, it is not a bad idea to
make decisions based on the value inside that spatial cell.

This section describes two ways to improve the path tracing step with the information
provided by the spatial cell from previous frames. The spatial cell from previous frames is
used in order to provide an analogical implementation of the methods, as the path survival
cannot read the values written in the current frame.

19



20 4. Adaptive Path Space Filtering

4.1.1 Variance Aware Path Survival

The current implementation of path space filtering traces one path per pixel. This gets
expensive for big resolutions. It is also not really necessary as the displayed value is read
from the spatial structure anyways and the spatial cells get accumulated temporarily, thus
generating a high number of samples per cell.

Some cells do not benefit that much from getting this many samples. Most of the time
these cells are almost completely converged.

Detecting properly converged spatial cells can be achieved by estimating their variance.
A cell with a high variance will need more samples than a cell with a small variance. In
this case, the variance of the radiance emitted from this cell is evaluated.

Given this variance measure, it is possible to tweak the probability of culling a path for
cells that have a small variance. This makes sense, as these cells are probably decently
converged already. The better a cell is converged, the less additional samples it will need
to generate a proper radiance estimate.

Culling these paths would automatically lead to improved computational performance,
without drastically deteriorating the visual fidelity. Nonetheless, it would not be a good
idea to remove paths completely. Doing so would starve these cells, thus generating prob-
lems for dynamic scenes.

A probabilistic approach is therefore proposed in order to still guarantee that no paths
get starved from samples, while also lowering the overall number of unnecessary paths
generated per pixel. This is done by utilizing probability functions.

In order to generate the probability of a path not being culled, a so-called path survival
function needs to be generated. It takes the variance as input and generates a given
probability. Controlling this function can be achieved by manually tweaking so-called
variance threshold v0 and v1.

This function should generate a higher probability for higher variances. It is therefore easy
to assume a linear function as seen in figure 4.1a:

p(v) = clamp
(

0, 1, v − v0
v1 − v0

)
(4.1)

As hard borders can result in harsh artifacts, a smooth linear variant is proposed in figure
4.1b:

p(v) = smoothstep
(

0, 1− v1 − v0
8 ,

v − (v1 + v0) · 0.5
(v1 − v0) · 5 +

(
1− v1 − v0

8

)
· 0.5

)
(4.2)

with

smoothstep (e0, e1, x) = clamp
(

0, 1, x− e0
e1 − e0

)2
·
(

3− 2 · clamp
(

0, 1, x− e0
e1 − e0

))
(4.3)

The smooth linear function has been tailored by manually tweaking the values such that
the shape of the function looks smooth.

4.1.2 Variance Aware Spatial Cell Interpolation

Spatial regions with low variance will probably not change their radiance too much. One
example would be a diffusely lit wall. It is a good idea to use the accumulated value from
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4.1. Methods Regarding Primary Surfaces 21

the spatial cell in this case. Spatial regions with high variance will also benefit from the
accumulation inside the spatial cell, as they induce a big amount of noise, which is hard
to get rid of by denoising the image.

Spatial regions in the medium variance range suffer from the bias induced by path space
filtering while not contributing too much noise themselves. It would therefore be beneficial
to use the unbiased result generated by the path tracer instead.

These low, medium and high variance regions are user defined regions.

Interpolating between path tracer and spatial cell contributions can be achieved by using
a linear interpolation. In order to determine the blending factor, a function just like the
one for the variance aware path survival 4.1.1 is used. Note that it is not a probability we
generate in this case, but a blending factor.

The function should also be controlled by manually setting variance thresholds v0 and v1.
It thus generates a blending value between zero and one.

The radiance generated by the path tracer is best used for medium range variance. A step
function would generate this exact behavior. An example can be seen in figure 4.1c:

p(v) =
{

0 v0 < v < v1

1 otherwise
(4.4)

Having hard thresholds would result in visible artifacts. It is therefore a better idea to use
something like figure 4.1d. Note that the function is continuous. This is beneficial as it
allows to merge the path tracing contribution with the path space filtering contribution,
resulting in an overall smoother image.

p(v) = clamp

0, 1, 1−
(1− v1−v0

8 )(
v−(v1+v0)·0.5

(v1−v0)·2

)2
· 16 + 1

 (4.5)

This one over x squared function has also been tailored by manually tweaking the values
such that the shape of the function looks decent.

Using these techniques yields the image seen in figure 4.2. Figure 4.3 shows how the
different functions change the result of path space filtering.

The interaction between variance aware path survival and spatial cell interpolation is
illustrated by figure 4.4.
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(a) Equation 4.1 for v0 = 0.4 and v1 = 1.2
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(b) Equation 4.2 for v0 = 0.7 and v1 = 0.9
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(c) Equation 4.4 for v0 = 0.4 and v1 = 1.2
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(d) Equation 4.5 for v0 = 0.4 and v1 = 1.2

Figure 4.1

Figure 4.2: Example image of adaptive path space filtering for primary surfaces.
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(a) (b) (c) (d) (e) (f)

Figure 4.3: Comparison between different combinations of functions used for primary
methods variance aware spatial cell interpolation (va-interpolation) and vari-
ance aware path survival (va path survival): (a) Path space filtering as a
reference, (b) uses zero for va interpolation and the linear function 4.1 for va
path survival, (c) uses zero for va interpolation and the smooth linear function
4.2 for va path survival, (d) uses the step function 4.4 for va interpolation and
one for variance aware path survival, (e) uses the one over x squared function
4.5 for va interpolation and one for va path survival and (f) uses the one over
x squared function 4.5 for va interpolation and the smooth linear function 4.2
for va path survival.
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Path Survived?
Use Radiance Stored in 

Spatial Cell
Perform Interpolation

No Yes

Spatial Cell of
Primary Surface

Calculate Path 
Survival

Figure 4.4: Illustration of the interaction between variance aware path survival and spatial
cell interpolation.
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4.2. Adaptive Path Graphs 25

4.2 Adaptive Path Graphs

Another way to utilize the variance measure is by embedding it into the path tracer itself.
The idea consists of using the variance measure provided by Bolin and Meyer [BM97]. By
utilizing equation 3.6, it is possible to limit the variance induced by the path tracer with
a constant value such that V [f ] < const. Assuming V [f ] ≥ const:

const ≤ V [f ]
⇔ const ≤ V E [f |x0] +

∑
j

EV [E [f |x0...xj ] |x0...xj−1] (4.6)

it is possible to find the largest possible index L such that:

const > V E [f |x0] +
L∑
j

EV [E [f |x0...xj ] |x0...xj−1] (4.7)

The measurement contribution function f from equation 2.3 depends on x0, ..., xL, ..., xk.
It is therefore possible to bind the variance below a threshold by cutting the contributions
after the index L. A better solution than removing them would be replacing them with
zero variance contributions. These zero variance contributions can be drawn from the
spatial structure as they only induce bias and not variance.

Using the linearity of expectation and removing the aliasing term V E [f |x0] yields:

const > E

 L∑
j

V [E [f |x0...xj ] |x0...xj−1]

 (4.8)

This formula no longer operates on separate layers but on separate paths instead. As
Aliasing induces little variance, it is possible to remove the aliasing term. It will thus not
be taken into consideration for this thesis.

Equation 4.8 holds true, especially if the variance of each path is smaller than the given
constant. This can be written as:

∀(x0, ..., xL, ...xk) ∈ P : const >
L∑
j

V [E [f |x0...xj ] |x0...xj−1] (4.9)

The last problem consists of finding the index L. This can be done by summing up the
variance for every path iteration like this:

Vi[f ] = Vi−1[f ] + V [E [f |x0...xi] |x0...xi−1] (4.10)

the index L is reached once the variance exceeds the given constant after being increased.

In order to use this statement for a path tracer, it is necessary to evaluate the term
V [E [f |x0...xi] |x0...xi−1]. This is done by utilizing the measurement contribution provided
by equation 2.3. One starts by separating the measurement contribution into a suffix- and

25



26 4. Adaptive Path Space Filtering

postfix-term at an index j:

f(X) = W

(
k−1∏
i=2

fr(xi−1, xi, xi+1)G(xi−1, xi)
)
G(xk−1, xk)Le

= fpre(X, j) · fpost(X, j)
(4.11)

The prefix-term is thus calculated as:

fpre(X, j) = W

 j∏
i=2

fr(xi−1, xi, xi+1)G(xi−1, xi)

 = W · tj(X) (4.12)

with tj(X) being the throughput at index j. The postfix-term is:

fpost(X, j) =

 k−1∏
i=j+1

fr(xi−1, xi, xi+1)G(xi−1, xi)

G(xk−1, xk)Le (4.13)

using this separation, it is possible to write the variance of a path iteration i as:

Vi[f ] = Vi−1[f ] + V [E [f(X)|x0...xi] |x0...xi−1]
= Vi−1[f ] + V [E [fpre(X, i− 1) · fpost(X, i− 1)|x0...xi] |x0...xi−1]
= Vi−1[f ] + f2

pre(X, i− 1) · V [E [fpost(X, i− 1)|x0...xi] |x0...xi−1]
= Vi−1[f ] +W 2ti−1(X)2 · V [E [fpost(X, i− 1)|x0...xi] |x0...xi−1]︸ ︷︷ ︸

variance estimate provided by the spatial cell

(4.14)

Clamping the generated variance below a given threshold would thus consist of carrying
a throughput and variance variable. For each step, the variance gets incremented by the
throughput squared times the estimated variance of the spatial cell, and the throughput
gets multiplied by the current bsdf weight afterwards.

Algorithm 2 does exactly that. It checks if the given path vertex induces enough variance
such that it would exceed the given threshold. In that case the algorithm would opt to
use the radiance given by the spatial cell which is said to have a bias but no variance.

At last, the local radiance and the radiance from the next intersection, provided by the
spatial structure, are written to the spatial structure for the current intersection. This
leads to algorithm 2. The effects on the spatial structure can be seen in figure 4.5.

The values inserted into the spatial cells are divided by the albedo of the current path
vertex. This is done in order to maintain high frequency texture details. It is not possible
to demodulate it as done in path space filtering, as the assumption provided for equation
2.15 does not hold here. Equation 2.15 handles diffuse surfaces only and can thus not be
used for non-diffuse surfaces.

The first benefit is that it is easy to implement this technique in a standard path tracer.
The path space filtering pipeline already covers all necessary computation outside the
path tracer. Implementing this method thus only persists of adding the code depicted in
algorithm 2.
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4.2. Adaptive Path Graphs 27

The main benefit is that the variance of the contribution approximately never exceeds the
given constant. It is therefore a great tool to tune the variance-bias trade-off between path
tracing and path space filtering. An example of how the variance constant changes the
result of adaptive path graphs is depicted in figure 4.6.

In order to have a smoother transition, the contribution of the path tracer gets blended
with the contribution of the spatial cell, such that the variance reaches exactly the variance
threshold once it overshoots. This is done by introducing an alpha value that weights
the usage of the variance inducing contribution, such that it induces exactly the correct
amount of variance. Let var be the accumulated variance, alpha be the sought alpha
blend variable, tp the throughput and E the estimated postfix provided by the spatial
cell:

var + V [alpha · tp · E] = const

var + alpha2 · tp2 · V [E] = const

alpha =
√

const− var
tp2 · V [E]

(4.15)

Multiplying this alpha value with the incoming contribution and weighting the zero vari-
ance contribution of the spatial cell with (1− alpha) yields the desired blending.

One remaining problem is that the spatial cells could end up in cyclic dependencies. This
could cause cells to build up artifacts by continuously affecting each other. In order to
prevent this, the current level of indirection is used to separate the cells in the spatial
structure. It is thereby guaranteed that no cyclic dependency can arise but the number of
samples per indirection is reduced.

Figure 4.5 shows that adaptive path graphs generates path information by a segment wise
update. It therefore does not need to store the path contributions separately. It can access
and insert these contributions with local information only. This leads to the last benefit
of having a small register pressure.

27



28 4. Adaptive Path Space Filtering

Algorithm 2: Adding adaptive path graphs to a given default path tracer
1: con← 0 // contribution
2: tp← 1 // throughput

+3: var← 0 // variance
+4: terminated← false
+5: alpha← 1

6: ray← cameraray()
7: currentIT← intersect(ray)

8: for i in (0, maxLength - 1) do
// check variance

+9: if not terminated then
// calculate using first and second moment, see equation 3.2

+10: varLocal← tp2 · (currentIT.hm.mom2 - currentIT.hm.mom12)
+11: if var + varLocal > const then
+12: alpha←

√
const−var
varLocal // blending such that var = const

+13: con← con + (1− alpha) · tp · currentIT.hm.raidance

+14: terminated← true
+15: var← const // var = const, see equation 4.15
+16: else
+17: var← var + varLocal

// direct
18: conNEE← NEE(currentIT) // contribution from next-event estimation

+19: con← con+ alpha· tp · conNEE

// indirect
20: ray, bsdfWeight← sampleBSDF(currentIT)
21: tp← tp · bsdfWeight
22: nextIT← intersect(ray)

+23: currentIt.hm.insert(conNEE + bsdfWeight · nextIT.hm.radiance)
24: currentIT← nextIT

+25: if terminated then
+26: alpha← 0 // disable contributions from the path tracer
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Spatial Cell Contribution
Collected Contribution

terminate = true

Figure 4.5: Illustration of adaptive path graphs.
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Figure 4.6: Illustration how the variance constant changes the image for non-jittered adap-
tive path graphs.
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5. Implementation

This chapter discusses implementation details of the program used to evaluate and compare
the given methods.

5.1 Graphics Pipeline
The overall structure of the graphics pipeline can be seen in figure 5.1. The pipeline starts
with the generation of a sky box, then it builds the necessary structures for rendering,
after that it uses a deferred pass in order to handle path tracing, next it uses an optional
denoiser and finalizes by drawing the user interface. It is separated into three parts, two
Vulkan command buffers and a CUDA call. This separation is necessary for the OptiX
denoiser, as it is implemented in CUDA.

The first Vulkan command buffer generates the image that needs to be denoised. In order
to do that it first generates a sky box. The sky box generation consists of drawing a
cube map for the night sky and two spheres, one for the blue sky, sun and moon and one
for the clouds, which consists of perlin noise. The sky is drawn to a cube map which is
done by rendering it for each face of the cube map. This generates the resulting dynamic
environment map.

After that it rebuilds the top level ray tracing acceleration structure. The bottom level ac-
celeration structure is already generated after loading the scene. As this program does not
provide compatibility for animation other than matrix transformation of whole instances,
there is no need to rebuild the bottom level acceleration structures.

The next step is to apply the hash map eviction. Details regarding these steps can be seen
in 5.3.

As this program uses a deferred renderer, the next step is the G-Buffer prepass. The layout
of the G-Buffer can be seen in figure 5.2.

This is followed by the deferred ray tracing pass, which is further discussed in section 5.2.

The path space filtering pass is also a deferred ray tracing pass, which is executed next.
It is explained in 5.3.

These steps yield the image that needs to be denoised next. In order to do that, the image
is copied into an external buffer that can be read from Vulkan and from CUDA as well.
This is achieved with a compute shader. This concludes the first Vulkan command buffer.
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Skybox Generation
Build RT 

Acceleration
Structures

Hash Map Eviction G-Buffer Prepass

Denoiser: Copy 
Image To Buffer

Denoiser: Apply
OptiX Denoiser

Denoiser: Copy 
Buffer To Image

Line VisualizationImGui

Vulkan Command Buffer 1

Vulkan Command Buffer 2

CUDA Call

PSF Pass

Deferred RT Pass

Figure 5.1: The current pipeline of this project. The synchronization between Vulkan and
CUDA is handled by an external semaphore.

The OptiX denoiser is executed with CUDA. In order to synchronize Vulkan and CUDA,
an external semaphore is used. This follows the implementation provided by NVIDIA1.

Once the denoising is finished, the result is written to the external buffer. The second
Vulkan command buffer is now executed.

The execution starts with a compute shader in order to write the buffer data back to an
image.

A line visualization used for debug purposes is rendered and after that ImGui is rendered
to the resulting image. The image gets written to the swap chain image, which concludes
the graphics pipeline.

1https://github.com/nvpro-samples/vk_denoise
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Usage / Channel
Type

R G B A

Color R32G32B32A32Sfloat

Position MatID R32G32B32A32Sfloat

Normal TrisID R32G32B32A32Sfloat

Tangent Roughness R32G32B32A32Sfloat

Bi-Tangent Metallic R32G32B32A32Sfloat

Depth D32Sfloat

Figure 5.2: The current layout of the G-Buffer. This can definitely be optimized.

5.2 Ray Tracing
Ray tracing is executed by utilizing the ray query extension inside deferred shaders. The
main benefit is that the main bounce can be executed faster by the rasterization pipeline.
The fragment shader for the prepass generates many fragments that are not visible. Run-
ning computationally expensive code like ray queries for every fragment would thus be
disadvantageous. A pass-through shader with one fragment per pixel is thus used for ray
query computation.

Hitting a triangle with a ray query returns an instance ID, a triangle ID and barycentric
coordinates. By binding the index buffer, the instance offset buffer and the vertex buffer
to this shader, it is easy to get the correctly interpolated hit vertex. Realizing whether
the ray missed or not can be achieved by checking the intersection type.

5.3 Path Space Filtering
In order to implement path space filtering properly, it is necessary to read and write to
a hash map in the same frame. This is not a problem for path space filtering as it works
with two passes, but the adaptive techniques provided by this paper need to access the
hash map in the same path tracer pass. The hash maps are written to by atomic float
operations. If done so, the hash map cell that gets written cannot be read in the same
pass as it will have corrupted values, for instance, while the counter has been increased
the radiance was not added yet.

In order to fix this problem, a dual buffering scheme is used. While the first hash map
will be written in this frame, the second one is read. After every frame, the hash map,
previously written to, gets copied into the other hash map in the eviction shader, after
applying the eviction and exponential moving average.

Path space filtering thus persists of three main passes: the hash map eviction, the path
tracer and the path space filtering pass.

The hash map eviction is a compute shader pass that not only copies the written hash
map into the other hash map, but it also evicts cells that have not been used for a longer
period of time.

Before copying the hash map, an exponential moving average for a given constant max-
imum cell size is applied. This exponential moving average needs to work on batches as
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many hash map insertions could have occurred in the previous frame. This is done by
declaring a maximum cell size N and multiplying the values in the written cells by N over
the number of accumulated samples. In order to evict cells, they also carry a time stamp
which is only updated if the cell has been used before. If the time stamp on a cell deviates
too much from the current time, it gets cleared.

The hash map also uses a dynamic size. The hash maps are written with a fixed size in
VRAM but the actually used size is handled by a constant. This constant is dynamically
re-sized depending on current settings like hash map cell size or screen resolution. This
drastically improves performance for the eviction shader, as it only works on the dynamic
size and not the whole allocated hash map.

The path tracer accumulates the contribution over every vertex along the path. It does
not apply the local color as this is done later on in the path space filtering pass. After
accumulating the values they are inserted in the hash map.

The path space filter shader reads those values from the hash map at the first bounce
generated by the G-buffer. It applies the albedo color from the texture and displays the
resulting image.

The path space filtering pass also serves some debug purposes like displaying the current
hash map occupation.
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6. Results

This chapter discusses the results generated by the two introduced techniques and com-
pares them to path space filtering and path tracing. The first comparison is based on
image quality, which is measured in terms of mean squared error (MSE). This comparison
is performed and analyzed in section 6.1.

The other comparison consists of a frame time analysis, measured in milli-seconds, which
is evaluated in 6.2.

At last, the relation between terminated path depth and variance constant for adaptive
path graphs 4.2 is analyzed in section 6.3.

All resulting values and images are generated on a system with an Intel core i7-9700k, a
NVIDIA GeForce RTX 3080 Ti and 16GB RAM.

6.1 Image Quality
The image quality is measured in terms of mean squared error (MSE). The equation for
the MSE can be written as:

MSE = 1
N

N∑
i=1

(Yi − Ŷi)2 (6.1)

where Yi describes the correct value drawn from a reference and Ŷi the estimated value.

The reference is generated by accumulating the result of an unbiased technique, in this
case path tracing. Doing so yields the results seen in figures 6.1 - 6.4.

Figure 6.1 shows that the techniques presented by this thesis produce roughly the same
MSE as path space filtering. The same pattern holds true for figure 6.2 and 6.3. There
are some instances in which the adaptive techniques generate a smaller MSE and some in
which they produce a higher MSE than path space filtering. The MSE of the adaptive
techniques in figure 6.4 is always a little bit lower than the MSE of path space filtering.

As the adaptive techniques opt to provide a trade-off between bias and variance, it is not
surprising to see this result, as both bias and variance raise the mean squared error.

In order to analyze this trade-off, it is necessary to calculate the bias and the variance of
the techniques.
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The bias is calculated by calculating the MSE between a path tracing reference and an
accumulated result of the given technique. Accumulating the result of the technique rids it
from the induced variance, therefore the only error remaining is caused by the bias. This
can be seen in figures 6.5 - 6.8.

Figure 6.5 shows that adaptive path space filtering for primary surfaces outperforms both
adaptive path graphs and path space filtering. Adaptive path graphs generates a smaller
bias than path space filtering.

The first crop in figure 6.6 shows the strongest benefit of adaptive path graphs, as the
shadow of the lamp is only visible when applying this technique. The other two examples
show artifacts of variance for adaptive path graphs, which leads to the assumption that
1000 frames are not enough for this scenario. Adaptive path graphs is the best technique
for all three crops and adaptive path space filtering for primary surfaces has a slight edge
over path space filtering.

Figure 6.7 shows another example where adaptive path graphs outperforms the other
techniques. It has the smallest bias for both the first and last crop. Adaptive path space
filtering for primary surfaces has, as always, a smaller bias than path space filtering.

At last, figure 6.8 shows more examples in which adaptive techniques show a lower bias
than path space filtering.

There is another way to analyze the bias of a technique by using the mean squared error. It
is done by accumulating a scene with a different number of samples per pixel and comparing
this result against an unbiased reference rendered with many samples per pixel. The MSE
of biased techniques will thus converge towards the bias of said technique. In order to
get a good result, a strongly converged reference is necessary. A path tracing result with
100000 samples per pixel is thus used. The resulting graph can be seen in figure 6.9. Note
that the entire scene is evaluated and not just small crops. Adaptive path graphs has the
smallest bias of the biased techniques. Adaptive path space filtering for primary surfaces
has a very similar curve to path space filtering, which makes sense, as it only interpolates
between path space filtering and path tracing. Using the path survival does not introduce
bias.

The last analysis in the context of image quality is the variance comparison. The variance
can be received by calculating the MSE between the accumulated result of the technique
and the one sample per pixel result of said technique. The accumulated result would thus
serve as the mean µ which results in the following equation:

MSE = 1
N

N∑
i=1

(Yi − Ŷi)2

= 1
N

N∑
i=1

(µ− Ŷi)2 = V [Ŷ ]
(6.2)

which is exactly the definition of the variance.

The variances of the currently discussed crops are depicted in figures 6.10 - 6.13.

Figure 6.10 shows the obvious result, adaptive techniques introduce more variance than
path space filtering. More interesting is how the variance constant affects the variance
for adaptive path graphs. Note that the variance calculated here can be higher than the
variance constant, as adaptive path graphs estimates the variance by utilizing the spatial
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structure. This estimation can thus lead to higher variance. In this case it is easy to see
that the variance constant of 0.0001 does not bind the variance of the crops below itself.

Looking at figure 6.11 one can see that the variance of adaptive path graphs is indeed
lower than the variance constant 0.04349. One can also see that adaptive techniques still
introduce more variance than path space filtering.

Adaptive path graphs interestingly produces less variance than path space filtering for the
first crop in figure 6.12.

Figure 6.13 shows similar results to figure 6.10.

It is therefore apparent that adaptive techniques introduce a variance-bias trade-off. The
bias is lower than the bias of path space filtering but the variance is bigger in general.

The variance-bias trade-off is also analyzed in figure 6.14 by calculating the bias and
variance as previously discussed for different variance constant values. The higher the
variance constant, the more variance is allowed, therefore the variance gets bigger. The
bias on the other hand gets smaller the higher the variance constant gets. This is exactly
the trade-off discussed before.
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Figure 6.1: MSE comparison, the reference is generated by accumulating 1000 frames with
path tracing.
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Figure 6.2: MSE comparison, the reference is generated by accumulating 100000 frames
with path tracing.
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Figure 6.3: MSE comparison, the reference is generated by accumulating 1000 frames with
path tracing.
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Figure 6.4: MSE comparison, the reference is generated by accumulating 1000 frames with
path tracing. The screen shots are taken by a moving camera.
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Figure 6.5: Bias comparison, the reference is generated by accumulating 1000 frames with
path tracing. The techniques are also accumulated over 1000 frames

42



6.1. Image Quality 43

Figure 6.6: Bias comparison, the reference is generated by accumulating 100000 frames
with path tracing. The techniques are accumulated over 1000 frames
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Figure 6.7: Bias comparison, the reference is generated by accumulating 1000 frames with
path tracing. The techniques are also accumulated over 1000 frames
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Figure 6.8: Bias comparison, the reference is generated by accumulating 1000 frames with
path tracing. The techniques are also accumulated over 1000 frames. The
screen shots are taken by a moving camera.
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Figure 6.9: MSE for different number of accumulated samples per pixel. Biased meth-
ods converge toward that bias. The scene is the Bistro Interior scene with a
resolution of 1920× 1080 and the whole screen is evaluated for MSE.
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Figure 6.10: Variance comparison, the reference is generated by accumulating 1000 frames
with the given technique. The variance constant for adaptive path graphs is
set to 0.0001.
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Figure 6.11: Variance comparison, the reference is generated by accumulating 1000 frames
with the given technique. The variance constant for adaptive path graphs is
set to 0.04349.
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Figure 6.12: Variance comparison, the reference is generated by accumulating 1000 frames
with the given technique. The variance constant for adaptive path graphs is
set to 0.00015.
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Figure 6.13: Variance comparison, the reference is generated by accumulating 1000 frames
with the given technique. The variance constant for adaptive path graphs is
set to 0.00093. The screen shots are taken by a moving camera.
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Figure 6.14: The variance and bias of an entire screen shot of the Bistro Interior scene
calculated as discussed for different variance constants.
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6.2 Frame Time
It is important to also compare the frame time, especially for interactive programs. In
order to do that, Vulkan provides time stamp queries. It is therefore possible to generate
precise measurements for frame timings of the different steps. The steps are discussed in
section 5.1 and depicted in figure 5.1.

The graphs in figures 6.15 - 6.18 depict cumulative graphs and a comparison between the
different techniques over 1000 frames. Note that the comparisons do not include the time
needed for the ImGui and Denoiser step, as these two steps are optional.

All graphs have one thing in common, the ranking of the different techniques. Adaptive
path space filtering for primary surfaces is the fastest technique, even faster than path
tracing. The second place goes to path tracing, closely followed by path space filtering.
Adaptive path graphs is the slowest technique and is improved by also utilizing adaptive
path space filtering for primary surfaces.

Looking at figure 6.15, using only two levels of indirection for 1920×1080 every technique
remains interactive.

Figures 6.16 and 6.17b imply that the levels of indirection have a high impact on adaptive
path graphs, which makes sense as it has to look into more spatial cells for more levels of
indirection.

The techniques also behave rather similar for moving cameras as seen in figures 6.17a and
6.17b.

A higher resolution also leads to more hash map look-ups in the case of adaptive path
graphs. The impact can be seen in figures 6.18a and 6.18b.

Adaptive path graphs is thus not suited to work well with too many levels of indirection
or too high of a resolution. Adaptive path space filtering for primary surfaces on the other
hand is a good technique to improve upon the frame time of path space filtering.
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(a) Adaptive Path Graphs + Primary (b) Adaptive Path Graphs

(c) Adaptive Path Space Filtering Primary (d) Path Space Filtering

(e) Path Tracing (f) Comparison

Figure 6.15: Bistro Interior, 2 levels of indirection, 1920× 1080 resolution
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(a) Adaptive Path Graphs + Primary (b) Adaptive Path Graphs

(c) Adaptive Path Space Filtering Primary (d) Path Space Filtering

(e) Path Tracing (f) Comparison

Figure 6.16: Bistro Interior, 10 levels of indirection, 1920× 1080 resolution
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(a) 2 levels of indirection (b) 10 levels of indirection

Figure 6.17: Bistro Exterior, 1920× 1080 resolution, moving camera

(a) 2 levels of indirection (b) 10 levels of indirection

Figure 6.18: Bistro Interior, 3840× 2160 resolution
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6.3 Adaptive Path Graphs: Path Termination Depth
The last analysis consists of measuring how the variance constant affects the path termi-
nation depth for path graphs. In order to analyze this, a scene with a light source that
can only be seen after some levels of indirection is used. Figure 6.19 depicts such a scene.
The resulting images and MSE are depicted in figure 6.20. The convergence of adaptive
path graphs combined with adaptive path space filtering for primary surface can be seen
in figure 6.21. It takes a little time for the rear spatial cells to reach the front spatial cells.

In order to see the path termination a little bit better, the jittering is deactivated. The
path termination depth can be seen in figure 6.22. Plotting the average path termination
depth against the variance constant yields the graphs in figure 6.23.

In real scenes it is hard to generate path termination depths other than 0 and 10, as the
variance induced by the first surface hit is either so big that it already exceeds the variance
constant or so low that the following path does not induce enough variance to cause an
early termination.

Camera

Strong Point 
Light

Figure 6.19: A corridor scene where the light can only be seen by using a higher level of
indirection.
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Path Tracing Reference – 10000 Samples Adaptive Path Graphs + Primary Methods – MSE: 0.00072 

Adaptive Path Graphs – MSE: 0.0075 Path Space Filtering– MSE: 0.00187 

Figure 6.20: Comparison of techniques for the corridor scene from figure 6.19, a variance
constant of 0.00163 is used.

Convergence after 100 frames Convergence after 200 frames

Convergence after 300 frames Convergence after 400 frames

Figure 6.21: Convergence of adaptive path graphs combined with adaptive path space
filtering for primary surfaces, for the corridor scene from figure 6.19 at one
sample per pixel. A variance constant of 0.00163, a one function for va-
interpolation and a smooth linear function for va path survival are used.
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Figure 6.22: Path termination depth for adaptive path graphs given different variance
constants.

Figure 6.23: Average Path termination depth for adaptive path graphs for given variance
constants.
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7. Conclusions

As a conclusion, after analyzing the image quality and frame time, the techniques provided
by this paper do a good job of allowing the user to control the variance-bias trade-off
between path space filtering and path tracing. These adaptive techniques are easy to
implement for a given implementation of path space filtering. They also run at interactive
frame times and adaptive path space filtering for primary surfaces has even shown that it
can surpass a path tracer. Another benefit is that an existing path tracer can easily be
extended to use these techniques, which keeps the programming overhead low.

The techniques still suffer from some artifacts caused by path space filtering. Having a
camera move through the world still causes the cache boundaries to become visible in some
scenarios, fireflies can still generate very high spatial cell contributions and many more.
But they do improve some scenes where the bias of path space filtering removes entire
shadows as seen in the previous chapter.

Adaptive path space filtering for primary surfaces also provides a simple framework for
variance based decisions other than spatial cell utilization or path survival. It could also
be used to maybe introduce some splitting scheme or similar ideas.

Analyzing how other functions would influence the results of this technique or maybe
learning these functions while rendering is work for future research.

Adaptive path graphs is still very computationally heavy, especially for high levels of
indirection. Despite that, it provides promising results for some scenes, especially in
combination with adaptive path space filtering for primary surfaces.

It would be interesting to see how these techniques would perform if the variance would not
depend on the luminance of the pixels by using a similar scheme as Rath et al. [RGH+20].
One could for instance use the denoised image from the previous frame or a filtered ver-
sion of that in order to normalize the variance such that it becomes independent of the
luminance.

Looking forward to future research on these techniques, there is still head room for opti-
mization.
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